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The escape rate for one-dimensional noisy maps near a crisis is investigated. 
A previously introduced perturbation theory is extended to very general kinds 
of weak uncorrelated noise, including multiplicative white noise as a special 
case. For single-humped maps near the boundary crisis at fully developed chaos 
an asymptotically exact scaling law for the rate is derived. It predicts that 
transient chaos is stabilized by basically any noise of appropriate strength 
provided the maximum of the map is of sufficiently large order. A simple 
heuristic explanation of this effect is given. The escape rate is discussed in detail 
for noise distributions of L6vy, dichotomous, and exponential type. In the latter 
case, the rate is dominated by an exponentially leading Arrhenius factor in the 
deep precritical regime. However, the preexponential factor may still depend 
more strongly than any power law on the noise strength. 

KEY WORDS: Noisy map; crisis; escape rate; structural instability; 
dichotomous noise; L6vy distribution. 

1. INTRODUCTION AND S U M M A R Y  

Of central interest in the study of nonlinear dynamical systems is the 
characterization of their time evolution as a function of some control 
parameters (see ref. 1 for review). Parameter values at which a chaotic 
attractor collides with a coexisting unstable fixed point or periodic orbit 
are called crises. ~2~ The sudden qualitative changes of the time evolution 
that occur at a crisis have received considerable attention during the recent 
years and it was soon realized that in many cases the influence of noise on 
these highly sensitive phenomena plays an important role. (3-17) Closely 
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related topics have also been investigated under the labels "noise-induced 
chaos,,1181 "generalized - �9 �9 ,,c191 multlstabdlty, "noise-induced transitions in 
chaotic systems, "~2~ certain type of deterministic diffusion with noise, c21" 221 
and the decay of metastable states with fractal basin boundaries. ~23"241 

In this article we continue our study ~'-5~ (henceforth referred to as I) of 
one-dimensional maps near crises in the presence of weak random fluctua- 
tions. In Section 2 our model system is introduced, consisting of a one- 
dimensional Markovian process in discrete time. It describes the dynamics 
of a particle x under the simultaneous action of a single-humped m a p f ( x )  
and a noise ~ of small intensity a. A second small parameter `4 measures 
the distance frow a boundary crisis at `4 = 0. In the absence of noise ( a =  0) 
the deterministic dynamics at the crisis `4 = 0  exhibits fully developed 
chaos ~26'271 on the unit interval [0, 1] and the corresponding invariant 
density p(x) is assumed to be known. Besides the smallness of ,4 and a, the 
conditions regarding the map f ( x )  and the noise ~ are very weak. In par- 
ticular, the maximum of the map at x = x* may be of arbitrary order z > 0 
and the noise distribution P(~, x) may explicitly depend on the present 
state x of the system in a very general way. 

In Section 3 we generalize the perturbation-like method introduced in 
I in order to determine the probability distribution of particles in the 
quasistationary state for small values of ,4 and a. This method is valid 
under the additional necessary and sufficient condition (23), notwith- 
standing the periodic windows I11 of the map f ( x )  that may occur for 
arbitrarily small A < 0 when z > 1. Put differently, under this extra condi- 
tion on a and ,4 we are able to overcome the problems arising from the fact 
that the deterministic dynamics is structurally unstable at the crisisJ 28~ 
These possible complications have always been tacitly ignored in similar 
investigations ~3'4"8"11'13"151 dealing with the effects of weak noise in the 
precritical regime (,4 <0) ,  for instance, so-called noise-induced crises. 

From the probability distribution in the quasistationary state we then 
obtain our central result (39) for the escape rate k of particles out of the 
unit interval [0, 1]. This rate formula has the form of a scaling law ~4" tl~ 
and becomes asymptotically exact for small ,4 and a satisfying the extra 
condition (23). Unlike in previously derived approximations, ~3"4'9'111 
possible recrossings of the interval boundaries 0 and 1 by the particles are 
fully taken into account. 

In Section 4 the rate formula is discussed in detail for a variety of mul- 
tiplicative white noises. Specifically, if the noise is governed by a L6vy dis- 
tribution [see Eq. (11)] one can identify universality classes, characterized 
by common critical exponents and scaling functions in the scaling law for 
the rate. For exponential noise distributions [see Eq. (15)] the recently 
predicted 115~ exponentially dominating Arrhenius factor in the deep 
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precritical regime [ A / c r ~ - - 1  but still respecting (23)] is determined 
explicitly. Further, it is demonstrated that the preexponential "correction" 
of this dominating contribution to the rate may actually be very strong. 
For  a particular kind of multiplicative noise acting on the logistic map, 
a comparison with numerical simulations is given in Fig. 1. 

In Section 5 we focus on the dependence of the escape rate upon the 
noise strength ~ in the postcritical regime (A > 0), corresponding to tran- 
sient chaos (see ref. 29 for review) in the absence of noise. We show that 
the rate for cr = 0 is reduced by basically any kind of noise, provided the 
maximum of the map is of sufficiently large order z and ~ is chosen 
appropriately. In particular, for symmetric noise distributions P ( - ~ ,  x ) =  
P ( ~ , x )  it is sufficient (and necessary) that z >  1. This phenomenon that 
deterministic transient chaos may be stabilized by weak noise was first 
observed in a numerical study by FranaszekJ ~~ Here, we analytically 
demonstrate the universality of this effect and we also offer a simple 
intuitive explanation. 

2. NOISY MAPS NEAR BOUNDARY CRISES 

We consider the one-dimensional dynamics of a particle with coor- 
dinate x in discrete time 17, 

x,,+ l = f ( x , , )  + ~r~,, (1) 

w he re f ( x )  is a map of the real axis, ~,, represents the noise, and the noise 
strength ~ is small, 

0 ~ < c ~ l  (2) 

The map f ( x )  is assumed to be single-humped with a maximum of order 
z > 0 at x* and to be given in leading order close to this maximum by 

f ( x  + x*)  = 1 + A - b  Ixl-- (3) 

where b > 0 and z/ is a second small parameter, 3 

- -1 ,~A,~  l (4) 

We further assume that f ( x )  is continuously differentiable w i th f ' ( x )  ~ 0 for 
all x q : x * .  The x scale is chosen such that x = 0  is an unstable fixed point 

3 Strictly speaking, we consider families of maps f(x) that are parametrized by d. However, 
if this parametrization is smooth, then for sufficiently small A the dependence o f f (x )  on zl 
turns out to be negligible except for A itself in (3). 
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and a second zero o f f ( x )  is at x = 1. This implies the following relations: 
f ( 0 ) = 0 ,  f ' ( 0 ) > l ,  0 < x * < l ,  f ( 1 ) = 0 ,  and f ' ( l ) < 0 .  A well-known 
example is the logistic map 

f(x) =4(1 + A ) x ( 1  - x )  (5) 

where obviously z = 2, x* = 1/2, and b = i f (0 )  = - f ' (  1 ) = 4( 1 + A). 
For  A = 0  the unit interval [0, 1 ] is mapped onto itself by f(x) and 

there exists a unique invariant density p(x) describing the stationary state 
of the dynamics (1) in the deterministic limit a = 0. For  instance, in the 
case of the logistic map (1) one has ~ 

1 1 
p(x ) -  ~"---x)x/x(1 (6) 

if x ~ [0, 1 ] and p(x)=0 otherwise. In the following we restrict ourselves 
to maps f~=o(X) with an invariant density p(x) that is positive, bounded, 
and continuous on the unit interval with the exception of arbitrarily small 
neighborhoods of the boundaries x = 0 and x = 1. (We conjectured in I that 
this will be guaranteed under the necessary and sufficient conditions that 
f3=o(X) has no stable fixed points or stable periodic orbits on [0, 1] or 
that p(x)~O close to x*.) It follows that the map f(x) shows fully 
developed chaos (z6'27) and exhibits a boundary crisis (z) when A =0 .  For  
A > 0 we are dealing with transient chaos 129) and for A < 0 with permanent 
chaos or with a periodic window (t) (the latter possibility can be ruled out 
for z ~< 1 and sufficiently small A < 0). 

The noisy dynamics (1) is assumed to be an autonomous Markovian 
process. In other words, the noise C,, is governed by a probability distribu- 
tion P(C, x) which is allowed to depend explicitly on the present state 
x = x,, of the system but not on the time step n nor on the state x,,, and the 
noise Co, at times m :~ n: 

Prob(C,, e [C, C + d~] ) = P(~, x = x,,) d~ (7) 

Thus, the normalization condition reads I ~ .  P(C, x) dC = 1 for any x. We 
further require that there exist x-independent positive numbers I/ and C0 
(they may be arbitrarily small and large, respectively) such that 

P(~, x) ~< 1/ICl' +"+ '/: (8) 

whenever [CI >t Co. [Through z this is actually a joint condition regarding 
both the map f(x) and the noise distribution.] Finally, we assume that 
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P(~, x) can be approximated by P(~, x*) for all x sufficiently close to x* 
and similarly for x close to 0 or 1, i.e., 

P ( ~ , x ) ~ P ( ~ ,  2) for x - ~ 2  (9) 

where 2 represents any of the points 0, x*, or 1. In full generality, this con- 
dition (8) has to be understood in the sense of  distributions, i.e., the integral 
~o~ t(~) P(~, x) d~ is supposed to be finite for any test function t(~) that 
is continuous and increases at most like I~1 '/= for large positive and 
negative ~. Similarly, (9) means that ~o~ t(~)[P(~, x) - P(~, 2)] d~ --* 0 for 
x ~  2 and any such test function t(~). For instance, P(~, x) may exhibit 
g-peaks at arbitrarily large ~ but with sufficiently small weights. Moreover, 
the positions and weights of such O-peaks must vary continuously with x 
in the neighborhoods of 0, x*, and 1. 

The dynamics (1) with a noise distribution of the form 

P(~, x) = PM(~/g(x))/[ g(x)[ (10) 

is equivalent to the dynamics x , ,+,=f(x , , )+ag(x , , )~ , ,  with a noise 
distribution PM(~) that is independent of the state x of the system. The 
conditions (8) and (9) are satisfied if PM(~) fulfills (8) and g(x) is bounded 
on R and continuous at 0, x* and 1. Within this restriction, multiplicative 
noise is thus a special case (10) in the general class of noise distributions 
(7) considered here. 

We close this section with three examples of multiplicative noise 
distributions (10) that fulfill the condition (8) and will be considered in 
more detail in Section 4. 

1. The symmetric L6vy distributions (3~ 

'~J dq iqr P u ( ~ )  = j - - e  e -IqF' 0 < i t  ~<2 (11) 

In particular, one recovers a Gaussian distribution for it = 2, 

PM(~) = (4to) -t/2 e-r (12) 

and a Lorentz distribution for ~ = 1, 

1 1 
PMtc~I-- 7 r ' ~ "  1 +~2 (13) 

Note that for p < 2  the asymptotic behavior for large ~ is PM(~)~ 
1/[~[~+~,.130) Hence, for symmetric Lgvy distributions with p <2  we will 
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tacitly restrict ourselves to mapsf (x)  with maxima of order z > l/It in view 
of the condition (8). 

2. The "dichotomous white noise ''~3~'32~ 

PM(~) = 6( t~1 - 1 ) / 2  

3. The symmetric "exponential distributions ''lls' 33.34) 

(14) 

0t 
PM(~) = 2F(1/~r exp{ -- 1~1~}, c~>O (15) 

The specific ~ values 1, 2, and ~ correspond to ordinary exponential, 
Gaussian, and confined homogeneous ~ lo. ~l, 35.36) noise distributions, respec- 
tively. It should be emphasized that unlike in the examples (11)-(15), we 
will in general not assume symmetry of the noise distributions (7) about 
~ = 0 .  

3. THE ESCAPE RATE 

3.1. General Framework  

The dynamical system (1)-(4) specified in the preceding section 
approaches a quasistationary state for large times nJ 3"4J This means that 
the probability distribution of the particles described by (1) becomes 
proportional to a quasi-invariant density W(x), where the proportionality 
constant differs very little for two successive time steps n and W(x) is 1l 
independent. It follows that the quasi-invariant density fulfills in very good 
approximation the master equation 

W(x)= P(xly) W(y)dy (16) 
- - , z c  

where the transition probability P(x[ y) that a particle jumps from y to x 
in one time step is given by 

P(x[ y ) 1 p ( X - - f ( y ) )  = -  , y (17) 
o o" 

according to (1) and (7). Moreover, the rate k at which particles escape 
from the unit interval in the quasistationary state can be written as 

k = ~ [  W ( x ) - ~  P(xl y) W(y)dy] dx (18) 
W(x) dx 
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As detailed in I, even if W(x) is an approximate solution of the master 
equation (16) which is not exactly equal to the true quasi-invariant density, 
the escape rate (18) which one derives from this approximation will be 
equal to the true rate within the same accuracy. Such an approximate 
solution W(x) and the resulting rate k will be determined in the following 
Sections 3.2 and 3.3, respectively. It can be shown by closer inspection that 
these approximations for the quasi-invariant density and the escape rate 
become asymptotically exact for small noise strengths ~ and parameters A. 

3.2. The  Q u a s i - l n v a r i a n t  Dens i ty  

Due to the required smoothness of the m a p f ( x )  and the continuity of 
the noise distribution (9) it is possible to find two small positive quantities 
ei, i = 1, 2, such that in arbitrarily good approximation 

f(x)=f'(1)(x-1),  P(~,x)=P(~,I) for x e [ 1 - e , , l + e l ]  (19) 

f(x)=f'(O)x, P(~,x)=P(~,O) for xE[-e,_,e2] (20) 

Since we are interested in asymptotically small noise strengths g and 
parameters A, we can always assume in the following that e~ and e2 are 
much larger than a and IA[. It then is obvious that the probability for a 
particle which has left the interval [ - e 2 ,  1 + e, ] to return into this interval 
is negligible. We thus can set 

W(x) = 0 for x r  l + e ~ ]  (21) 

without notably changing W(x) at those x values which mainly contribute 
to the rate (18). 

At the crisis (A =0)  and in the absence of noise (cr=0) the quasi- 
invariant density W(x) coincides with the invariant density p(x). As 
discussed below Eq. (6), the invariant density p(x) is positive, bounded, 
and continuous on [e_,, 1 - e l ] ,  but typically has singularities at 0 and 1 
and vanishes outside [0, 1]. This suggests that even for nonvanishing but 
sufficiently small a and A the functions W(x) and p(x) will still approxi- 
mately agree, on [e,_, 1 - e l  ], 

W(x)=p(x) for xe[ez, l - e l ]  (22) 

while outside this interval they may substantially differ. A complication 
arises from the periodic windows I~l occurring for maps f(x) with maxima 
of order z > 1 in the regime A < 0, since in such a case Eq. (22) becomes 



410 Reimann 

obviously wrong in the deterministic limit a ~ 0. Additionally, W(x) typi- 
cally develops singularities in the domain [e2, 1 - e l  ] when z > I and t7--* 0 
even for those ,4 < 0  not corresponding to a periodic window (see, e.g., 
Fig. 3 in I). In other words, W(x) is structurally unstable at the crisis in the 
deterministic limit. 12s~ By closer inspection of this difficulty the following 
necessary and sufficient condition for the validity of (22) was derived in I 
for the special case of additive Gaussian white noise: 

a>>[AT ~/l:-l) for z > l ,  d < 0  (23) 

Loosely speaking, it guarantees that the singularities of W(x) on 
[e2, 1 - e l ]  that one would encounter in the limit a ~ 0  are sufficiently 
"washed out" by the noise. It can be shown that the line of reasoning in I 
to prove (23) can be extended to the entire class of noise distributions 
P(~, x) considered here. Note that (23) only concerns z >  1 and ,4 <0.  For 
z~< 1 or ,4/>0 there is no additional condition in order that (22) is valid, 
since periodic windows are ruled out. From now on we always restrict our- 
selves to small noise strengths (2) and parameters (4) that satisfy the extra 
condition (23). we are thus left to determine the quasi-invariant density 
W(x) in the regions [ 1 - e l ,  1 + e l ]  and [ - e 2 ,  e2]. 

In order to determine W(x) for x ~ [ 1 - - e l ,  l + e ] ]  one exploits the 
fact suggested by (17) and (8) and discussed in more detail in I that only 
y values close to the maximum x* off(x) notably contribute to the integral 
in the master equation (16). For  these y values one can use the approxima- 
tions (3) for f ( y )  and P((,  x ) =  P((,  x*) according to (9). Further, due to 
(22) and the continuity of p(x) at x=x* one may approximate W(y) by 
p(x*). Finally, all these approximations can be extended to arbitrary y 
values without notably changing the value of the integral in the master 
equation (16). We thus find that for x e [ 1  - e~ ,  1 +e~] 

W(x)=p(x*) dy p x - l - A + b l y l - - , x  * = : W o ( X - 1 )  (24) 
_ ~ _  t7 C7 

Similarly, in order to determine W(x) for x ~  [ - % ,  e2] one observes 
that only values of 3' belonging to the interval [ - % ,  %] or a small 
neighborhood of 1 give nonnegligible contributions to the integral in the 
master equation (16) (for details see I). Without loss of generality, e I and 
e2 can be chosen such that the latter neighborhood of 1 coincides with 
[ 1 - - e l ,  l + e l ] .  For  y~[--e2, e2] one then can use (19) and for 
yE[1--el, l + e ~ ] ,  (20) and (24). Finally, one again can extend these 
approximations to arbitrary y values without notably changing the value of 
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the integral in the master equation (16). Hence, for x~[ -e2 ,  e2-1 the 
master equation (16) is equivalent to 

.,0 W(y)+ P x - f ' ( 1 ) Y  1 wo(y) 
- ~ O" - ~ .  O" 

(25) 

Next we will determine a solution W(x) of (25) on the whole real axis. 
However, it should be noted that this W(x) represents the quasi-invariant 
density, i.e., an approximate solution of the master equation (16), only for 
x ~ [ - e2 ,  e2]. Since (25) is an inhomogeneous Fredholm integral equation, 
we may expect a solution of the form 

m 

W(x) = ~ wi(x) (26) 
i = l  

where m is kept finite for the moment, wo(x) is given in (24), and 

x,* : = i S  * =o(X ), i>~0 (28) 

In other words, we have x* =x* ,  x* = 1, and x * = 0  for i~>2. By means 
of a straightforward calculation one finds that (24), (27) can be rewritten 
in the form 

w,<x) 2P(z~l : iA ' : i ' / : Io  ~- dyy-t+t/:h,(y+X/A'~ -A.)  (29) 

i 
, m  

h i (x )=  dylAi lP(Ai (x-y) ,x*)h i  ,(y), i>~l (30) 

ho(x) = P(x, x*) (31) 

where we introduced 

d , i  

Ai "= ~I f ' (x~)=~J~=o(x=x*) ,  i>~O (32) 
~=~ 

Here, for i - -0  the product is defined to be 1 and in the last equality we 
used the approximation f ' ( x * ) =  J'3 =0(xP) valid for small A [see also the 
paragraph following Eq. (5)]. We thus have Ao=  1 and Ai=f '( l ) f ' (O) ~- t 
for i~> 1. As mentioned below Eq. (4), . /"(1)< 0 a n d f ' ( 0 ) >  1, implying that 
the A; are negative for i >/1 and diverge exponentially toward - oo for large i. 
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From (30), (31) it follows by induction that 

f~- hAx) dx = 1 (33) 

Further, it can be concluded from (8) and (30) by induction that 

h~(x)<.l/[x[ ~+"+~/: for [x[,>l (34) 

In particular, this implies that the integrals in (29) are finite and that the 
main contribution to the integral in (33) stems from a finite (a- and 
A-independent) neighborhood of x = 0. Taking into account (29) and (34), 
a simple calculation yields the asymptotic upper bound 

2(I + 1/z) p(x*) a "+ i/: [Ail,~ x 
wi(x) ~< for --;--A,>0- (35) 

bl/: [ x_  AiA[ I +,, Ai 

where we recall that Ao= 1 and 
asymptotic behavior of wi(x) for 
from (33) and (34) that the main 
from a small neighborhood of 
neighborhood y ~/:- I is practically 
it then follows that 

A~<0 for i~> 1. Next we address the 
x / A s - A , ~ - ~ :  In this case it follows 
contribution to the integral (29) stems 
y = ( - - x / A i + A ) / a > > l .  Since in this 

constant and taking into account (33), 

2p(x*) I x - A i A I  -~+~/= x 
w i ( x ) -  zbl/:lAill/= for ~ i - -  A ,~ --a (36) 

Remarkably, the asymptotics (36) is completely independent of the noise 
distribution P(~,x).  In the limit A = a = 0  one recovers from (24), (26), 
(35), and (36) the correct features of p(x) outside [e2, 1 - e l l  mentioned 
above Eq. (22). 

For z ~<1 a partial integration of (29) yields w'i(x)>/0 for i~> 1. Thus, 
wax) is monotonically increasing. Similarly, one can see that Wo(X) is 
monotonically decreasing. On the other hand, for =, > 1 and any i ~> 0 it can 
be shown from Eqs. (33)-(36) that wax) in (29) has an absolute maximum 
in the domain ]x /A i -A[  <~ O(a) and can be roughly approximated by 

w~(x)~wi(AiA)=2p(x*)~o"= dyy- l+l /=hi(y)  x A 
zb l/: [Ai[ 0 "1 -'/-- for -~ i -  <~ 0(0-) 

(37) 

[The approximation (37) is actually valid also for z~< 1.] These findings 
together with the asymptotic properties (35) and (36) provide a good 
qualitative picture of the functions wax). 
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Since Aj tends to - m  for large i, the kernel IA;I P(Ai (x -y ) ,  x*) in 
the integral (30) approaches 6(x-y) .  The fact that the divergence of Ai is 
exponential in i then suggests that this convergence toward 6 ( x - y )  is 
sufficiently fast in order that the functions hi(x) also tend toward a well- 
defined limit h.~(x). Note that in the most general case this convergence 
hAx) ---, h~.(x) is understood in the sense of distributions; see the discussion 
following Eq. (9). For the particular noise distributions ( 1 I)-(15), the exis- 
tence of h~(x) will be explicitly verified in Section 4. However, from a 
rigorous point of view we cannot prove the existence of h~(x) in general 4 
and it is thus henceforth understood as a tacit additional assumption 
regarding the noise distribution P(~, x) [and strictly speaking also the 
values off ' (0) ,  i f ( l ) ,  and x*]. With (37) it then follows that for large i the 
functions wax) become x-independent on the interval [-e_, ,e2]  and 
decrease proportional to f ' (0 )  -i. As a consequence, W(x) from (26) and 
(29) tends toward an m-independent finite limit and solves (25) in 
arbitrarily good approximation for x~  [ - e 2 ,  e2] and sufficiently large m. 
Furthermore, it can be shown by exploiting the properties (35)-(37) of 
wax) and the existence of h~(x) that W(x) from (26), (29) goes over into 
the correct behavior (21) and (22) for x values close to the boundaries of 
the intervals [ - e z ,  e2] and [ 1 - e t ,  l+e~] .  In other words, we found a 
self-consistent approximate solution W(x) of the master equation (16) on 
the whole real axis. 

3.3. The Rate Formula 

We first evaluate the denominator l~ W(x)dx in the escape rate (18). 
According to (22), we have p(x)= W(x) on the major part of the unit 
interval [0, 1]. It is suggestive and can be rigorously shown by means of 
the results from Section 3.2 that contributions of x values from the small 
neighborhoods of 0 and 1 where W(x) and p(x) notably differ, are negli- 
gible both in lo ~ W(x)dx and l~ p(x)dx. Since p(x) is normalized on the 
unit interval, the denominator lo t W(x)dx in the escape rate (18) can thus 
be approximated by 1. The evaluation of the numerator is somewhat more 
involved. However, the basic step, namely the asymptotic equality 

f0  k = ,!irn w,,,(x) dx (38) 
- - o C  

4A similar mathematical problem (but within a rather different physical context) has been 
studied in ref. 37. For a restricted class of noise distributions P(,~, x), the existence of h~.(x) 
follows from Theorem 3.1 therein. 

822/85/3-4-8 
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for small a and A is obtained by a straightforward adaptation of the line 
of reasoning detailed in I. 

Introducing (29) into (38), we can rewrite the rate in the form 

k = p(x*)(a/b)l/: F(A/a) (39) 

f; F(x) :=2  dyyl / :h~(y-x)  (40) 

This is the central result of our paper. It becomes asymptotically exact for 
small noise strengths ~ and distances ,4 from the crisis under the additional 
necessary and sufficient condition (23). In (39), p(x) is the invariant density 
at the crisis in the absence of noise normalized on the unit interval. The 
quantities b and z describe the map f(x) near its maximum x*; see Eq. (3). 
The existence of the limit h~(x)= limi~ ~ h~(x) is implicitly assumed. It 
can be determined by means of the recursion (30), (31), which is 
particularly suitable for numerical purposes. On the other hand, a Fourier 
transformation of (30), (31) yields 

i 

hi (q)  = hi(x) e-iq'ax= I-[ P(q/A,,x?) (41)  

where the Fourier transform of the noise distribution (7) is given by 

f? fi(q, x) := P(~, x) e -iq~ d~ (42) 
o-j 

By a Fourier backtransformation and using (28), (32), one thus arrives at 

hoo(x)-f dqeiq"fi / "* - f ~  =o(.X ) (43)  
(d/dx) f~  =o(X = x*) '  

This expression for h~(x) gives the explicit connection between F(x) in 
(40) and the noise distribution P(~, x). It is particularly useful in cases 
which can be analytically solved; see Section 4. Note that the only proper- 
ties of the map f (x)  entering ho~(x) are the maximum x*, its iterates 1 and 
0, and the derivatives f ' (1 )  and f ' (0 )  at the specific parameter value A = 0. 
In particular, the actual values of A, z, and b describing the behavior of 
f(x) near x* do not matter. 

The rate (39) depends in a global way on the m a p f ( x )  through p(x*) 
and on the noise distribution P(~, x) through ho~(x). For the rest, only 
local properties of the mapf (x )  at 0, x*, and 1 enter the rate formula. Con- 
sidered as a function of A and a, the rate (39) has the form of a scaling 
lawj4, l l~ The critical exponents are 1/z and 1, the scaling function is F(x), 
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and k, A, and a play the roles of order parameter, control parameter, and 
relevant scaling field, respectively, t38) It can be shown that (23) is a 
necessary condition not only for our result (39), but for the validity of any 
scaling law for the rate. 

Since (33) and (34) stay valid in the limit i ~  m, it follows that for 
x >> 1 only y values from a finite neighborhood of y = x notably contribute 
to the integral in (40). In this domain one can approximate yl/_, by x I/z. 
Using (33) once more, one recovers the correct deterministic limi( 291 (see 
also Section 5) 

k=2p(x*)(A/b) ~/~ for A>>a (44) 

[Since A > 0 the a values are not restricted by (23).] In combination with 
(40), we thus can conclude that for arbitrary maps and noise distributions 
the scaling function F(x) is strictly monotonically increasing with x, 
approaching 0 for x ~ - ~ and 2x ~/: + o(x 1/:) for x --, ~ .  

4. E X A M P L E S  A N D  N U M E R I C A L  R E S U L T S  

In this section we discuss the central rate formula (39) in more detail 
for the special case of multiplicative noise (10) of the form (11)-(15). For 
this purpose it is useful to introduce the quantities 

T~ := g(fi, j=o(X*)) /d f~=o(X=X *) (45) 

or, equivalently, 

g(1) g(0) 
To=g(x*), T , = f , ( 1  ), T, - f , (1 ) f , (O) ,_  ) for i>~2 (46) 

Whenever a T; is zero the recursion relation (30) takes the trivial form 
hi(x)=h~_l(x). Thus, in order to determine hodx), such an i value can 
simply be omitted and all the following indices i have to be reduced by 1. 
Since the quantities 7",., i >~ 2, always vanish simultaneously, the function 
h~(x) is obtained after a single iteration of the recursion relation (30) in 
this case. Therefore, we restrict ourselves to the case that T~ ~ 0 for all i ~> 0 
in the following. Note also that hm(x), rn >1 O, can be obtained by formally 
setting T~=0 for all i >  m in the expressions for ho~(x) we will derive in 
the sequel. 
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4.1. L6vy Distributions 

The most suitable examples for an explicit evaluation of ho~(x) in (43) 
are the symmetric L~vy distributions (11), From the definitions (10) and 
(42) one sees that/~(q, x ) = e x p { - [ g ( x )  q[~'} and thus 

U~, _ ~ - ~  e'qXe -Iqv ' l t '  (47) 

st,:= ~olr~l" --Ig(x*)l"+f,-~ +lf'(1)l"(f'(o)"-l)/ (48) 

Consequently, the rate (39) can be rewritten in the form 

k = p(x* ) ( ~--~' a) ' / : /~  ( U-~--~, A ) (49) 

I: Nxl :=2 d y y l / : P M ( y - x )  (50) 

We recall that PM(~) in (50) is given by (11) for general/l and alternatively 
by (12) and (13) in the particular cases of Gaussian (/t--2) and Lorentz 
(/~ = 1 ) distributed noise, respectively. Moreover, for/t < 2 the z values are 
restricted by the condition z>l//~ as mentioned below Eq.(13). It is 
remarkable that in the scaling law (49) both the critical exponents and the 
scaling function F(x) are universal for any f ixed p and z. As in the theory 
of critical phenomena, ~3s~ the specific properties of the map f(x)  and the 
coupling function g(x) of the multiplicative noise enter the scaling law (49) 
only through the nonuniversal scaling amplitudes p(x* )( U~,/b) t/: and 1 / U~,. 
In other words, p and z uniquely determine the universality class and thus 
play the same roles as the dimensionality of space and the number of com- 
ponents of the order parameter in the theory of critical phenomenaJ 38~ It 
can be shown that this particular feature is lost as soon one goes beyond 
the realm of L6vy distributions. 

4.2. Dichotomous Noise 

For dichotomous white noise (14) one finds that P (q ,x )=  
cos(1g(x)[ q). With (43) one arrives at 

2+,1 ) h~(x )=  lim y" c5 x -  a iT  i (51) 

where the outer sum runs over all the 2"' += possible configurations of the 
"spins" cr i, 0 ~< i ~< m. Note that h~ (x )=  0 for x Y'q=o [Tg]. Further details 
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of h,~(x) crucially depend on the specific values of the T;. For  instance, in 
the case of additive noise, g(x) - 1 and a map wi th f ' (0 )  = - f ' (  1 ) the func- 
tion h~.(x) consists of two 6-peaks i f f ' (0)  = c~, an infinity of 6-peaks located 
on a Cantor dust if 2 < f ' ( 0 ) <  oo, and is equal to O ( I x l - 2 ) / 4  i f f ' ( 0 ) = 2 ,  
where O(x):=f~_~6(y)dy is the Heaviside function. For 1 < f ' ( 0 ) < 2  the 
features o fh~(x)  are not so obvious and are not discussed here in further detail. 

Introducing (51) into (40) yields 

~__ + X - -  0 X - -  tTiT i (52) F ( x ) =  .,~lim ~;; ~,=_l /=0 i=o 

For  x < - ~i~L o I Ti I we have F(x) = 0, implying for the rate (39) that 

k = 0  for A/a<~ - ~  IT;I (53) 
i = 0  

Basically, this is a consequence of the fact that the noise distribution (14) 
has bounded support and thus for A < 0 and sufficiently small a particles 
cannot escape from [ 0, 1 ]. For  large x = A/a one recovers the deterministic 
limit (44) from (39) and (52). 

4.3. Exponential Noise Distributions 

For the exponential noise distributions (t5), closed expressions for h~(x)  
in (43) can be given in the three particular cases of Gaussian (ct = 2), ordinary 
exponential (c~= 1), and confined homogeneous noise (ct= oo). The case of 
Gaussian noise readily follows from (47)-(50) with/l = 2. For ct = 1 one finds 
that/3(q, x) = ( 1 + [ g(x) q] 2) - ~ and thus by invoking the residue theorem that 

~ e-,.,-/r,, f i  , h~(x) = T7 (54) 
i=0 2 ITsl 1=o T;-- T 7 

I ~ i  

Introducing this expression into (40) does not allow a further evaluation of 
F(x) except for x >> 1, corresponding to the deterministic limit of the rate 
(44), and for x ~< 1, where one finds that 

F(x) F ( I+! )  ~ IT, I1/:e-l"/r~lfi T~ = ,----- , (55) 
i=o /=o TT- T7 

I r  

It can be shown that both in (54) and (55) the infinite sum converges to 
a finite value for any x, including x = 0, and that both results stay valid 
even when T,. 2 ~ T~ for some i ~ 1. 
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For 0~= oo one finds that P(q, x )=s in [g(x)  q]/[g(x)  q]. Evaluating 
(43) by means of the residue theorem then leads to a somewhat similar 
result as in (51), namely 

1 Ix + Z,"'_-o a,-T,.I (x+ZT'=oaiTi) .... ' 
h~.(x)= lim 2.,+ _, ~ (56) 

Ft~! 1-I7~ o O'i I Ti I 

In further similarity with (51), h~(x )=O for x>ZTgo  IT,  I, which is not 
obvious from (56) but readily follows from the recursion relation (30). [In 
the same way one finds that h~ (x )=  I/2 for x <  1-ZT_Lt IT;I provided 
Z ) ~  IT~I <~ 1.] As for (54), introducing (56) into (40) does not allow a 
further evaluation of F(x) except for sufficiently large positive and negative 
x, for which one recovers (44) and (53), respectively. 

For the exponential noise distributions (15) with general 0c>0, the 
rate (39) can be further evaluated only in the deterministic limit A >> a [see 
(44)] and in the opposite asymptotic regime A ~ - a  [but still respecting 
the condition (23)]. This case A ~ - -a  is considered in the remainder of 
this subsection. By means of a technically involved but somewhat tedious 
calculation an asymptotically exact analytical solution of the recursion 
(30), (31) for h~(x) is possible for large Ix1, yielding 

h.~(x)=e_t.,./A.. P, o~ for 0 < ~ < 1  (57) 
21(1/o0 ,4 ~.~ 

e -I''/A~I f i  A~_ 
h ~ ( x ) =  2 A ~  A2 , for ~ =  1 (58) 

i=o ~ -  T7 

h~(x)=e-1"/'4"-I'Klxl al"l'l+;' for ~>1  (59) 

where we introduced 

g(1) , g(0) } 
A ~ = m a x  [Til=max Ig(x*)l, ~ f ' (0--~(1) 

for 0 < ~ < 1  

A ~ =  IT, I "/( '- ')  =U,,=~,/,,_~) for cc>l 
i 

fl = (~ - 1 )(2 - ~)/[4 In f ' (0 ) ]  

0c-1  

2 In f ' (0)  Ink, 2 ( ~ -  1) ALf ' (1  ) ) 

(60) 

(61) 

(62) 

(63) 
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Additionally, the nongeneric cases that IT o] = IT1 I, I To ] < IT11 = I T2 l, or 
]To [ = [ 7", [ > [ Tl [ are excluded for the sake of convenience when 0c ~< 1. The 
explicit form of U~, from (61) is given in (48). The coefficient K in (59) is 
x-independent, positive, and finite, but cannot be ex,121icitly determined by 
analytical means except for Gaussian noise: K =  [x /n  A~ ] -  ~ for 0c = 2, in 
agreement with the exact result (47) for p = 2 .  Similarly, for e =  1 the 
asymptotic behavior (58), (60) coincides with the exact result (54) for large 
Ixl. In the limits 0c~ 1 and e--, oo the exponentially leading part 
exp{ -[x/Ao~ I ~} in (57) and (59) is in agreement with the exact results (58) 
and ho~(x)=0 for Ixl>Y'.~__o IT~I [see the discussion below Eq.(56)], 
respectively. However, the preexponential contributions in (57) and (59) 
are no longer valid in these limits, due to the fact that the limit [xl--, oe 
does not commute with e ~ 1 or ~--* oo. For similar reasons, the limits 
f ' (0 )  --* oe a n d f ' (  1 ) ~  - o o  are not admitted when ~ > 1 [in fact, it is only 
9~ in (59) that does not converge to its correct limit 0]. 

Using these results (57)-(59) for h ~ ( x ) ,  one finds for the scaling 
function F(x) from (40) that 

- / \ ~  Ixl ~ - '  h~(x) for x <~ -1  (64) 

Consequently, for A ,~ - a  the rate (39) is dom#lated by an Arrhenius-like 
fac tor  e x p { -  IA/(GAo~)I~}. This property, but without the explicit expres- 
sions for A~,  was recently derived by H a m m e t  al. ~5~ It is only for 
Gaussian noise (cc=2) that the exact value of A~ was determined pre- 
viously by Beale 18~ [in agreement with our result (61)]. An approximation 
for general ~ is given in ref. 39. The preexponential part of the rate (39) 
becomes proportional to a~/:l,4/al ~1 - ~  + '/-'~ for ~ ~< 1 and ~ = 2 according 
to (57)-(59), (64), i.e., it depends algebraically upon a and A. On the other 
hand, f o r  ~ > 1, oc ~ 2, the preexponential  dependence o f  the rate upon A and 
cr is stronger than any power  law according to (59) and (64). Hence, there 
may be considerable deviations from the exponentially leading Arrhenius 
law ~51 even for rather large negative values of zl/tr. 

4.4. Numerical Simulations 

It is beyond the scope of this paper to carry out a systematic 
numerical verification of the various results derived in this section. For the 
case of additive Gaussian white and colored noise acting on different kinds 
o fmaps f (x )  we refer to I and refs. 22, 24. Here, we restrict ourselves to one 
particular example of non-Gaussian multiplicative noise. For the sake of 
convenience we consider the logistic map (5) with confined multiplicative 
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Fig. I. The escape rate k as a function of the p a r a m e t e r  A for the logist ic m a p  (5) d is turbed  
by mul t ip l ica t ive  noise (10) with the noise  coup l ing  function g(x) from (65) and  a conf ined 

h o m o g e n e o u s  noise d is t r ibu t ion  PM(~-)= O ( 1 - [ ( [ ) / 2  [ c o r r e s p o n d i n g  to (15) with ~ = o~]. 

The symbols  represent  the results  from numer ica l  s imula t ions  of the Langevin  equa t ion  (1) 
wi th  noise s t rengths  a = 10 -4 ( t r iangles) ,  a = 3.0 x 10-6  (crosses),  and  ~ = 10-7  (circles). The  

solid line is the theoret ical  predic t ion  accord ing  to (39) - (43)  [w i th  z, b, and  p(x*) fol lowing 

from (5) and  (6)] .  Apar t  from finite g and  A effects, the agreement  is excellent.  

noise according to (10) and (15) with a = co. As noise coupling function we 
choose 

- - 3 ( x -  1/2) 
g(x) - (65) 

I x -  1/21 + 1 

Thus, g(x) is of odd symmetry about the maximum x* = 1/2 of the map 
f (x) ,g(1/2+x)=-g(1/2-x) ,  and bounded on R. Specifically, we have 
g(0) = 1, g (1 /2)=0 ,  and g ( 1 ) = - I .  This choice is of particular interest 
singe it corresponds to a noise distribution (10) that is discontinuous in 
for any x~x* and exhibits a f-peak at ~ = 0  for x=x*. Thus, the condi- 
tion (9) is only satisfied in the most general version, namely in the sense 
of distributions. The theoretical rate is completely fixed by the rate formula 
(39), (40), the invariant density (6), and the explicit expression (56) for 
h~(x). The comparison with numerical simulations is shown in Fig. 1. 

5. STABILIZATION OF TRANSIENT CHAOS BY NOISE 

In this section we consider the escape rate as a function of the noise 
strength tr for an arbitrary but fixed (small) value of the parameter A. To 
this end we rewrite the rate formula (39), (40) in the form 
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k(a) = 2p(x*)( I/I I/b ) '/: G(e/`4, z) (66) 

G(x, z) = dy l1 +xyl l /=h~(y)  (67) 
�9 - IIx 

For the sake of simplicity we assume that the order z of the maximum 
of the map f ( x )  can be varied without changing the position x* of this 
maximum and the values of the slopes f ' ( 0 )  and f ' ( l ) .  Consequently, the 
function h~-~(x) in (67) is independent of z according to the recursion rela- 
tion (30), (31). From the normalization (33) of h~(x)  it follows that 
G ( 0 + , z ) = l ,  in agreement with the deterministic limit (44) for ,4>0,  
a--*0. Note that, at variance with I, the factor 2 in (66) has not been 
absorbed into the definition of G(x, z), since this convention implies the 
appealing relation 

k(a) /k(a  = O) = G(a/,4, z) for A > 0 (68) 

In agreement with the fact that for ,4 < 0 particles cannot escape from the 
unit interval in the deterministic limit a --* 0, we find that G(0- ,  z) = 0. The 
discontinuity of G(x, z) at x = 0  is of no relevance since the argument 
x=a/ ,4  in (66) never crosses x = 0  according to the restrictions (2), (4), 
and (23) on a and ,4. 

From (67) we can infer that 

lim G(x,z)>~ lim x I/-" d),yl/--h.,~(y)=ov (69) 
. \ ' 4  O5 .\" ~ COt 

where in the last equality we disregarded the rather strange case that 
h ~ ( y ) - O  for y~>0, which would imply that the escape rate (39), (40) 
vanishes at the crisis ,4 even for finite a. Further, it is possible to show by 
closer inspection of (67) that 

E lim G(x=cz ,  z ) =  d y h ~ ( y )  (70) 
- - - 4 0 " 3 .  

for any c > 0 .  Disregarding once more a rather strange case, namely 
h ~ ( y ) - O  for y<O,  one sees from (67) and (70) that G(ez, z ) <  
G(0 +, z) = 1 for sufficiently large z. With (69} it then follows that G(x, z) 
has an absolute minimum at Xmi,(z)>0 in the region 0 ~<x <o o  for 
sufficiently large z, say z > Zo. In view of (68) this leads to the remarkable 
conclusion that transient chaos ( A > O) is stabilized by noise o f  appropriate 
strength a for z > z o. In this reasoning it is of course tacitly understood that 
A is sufficiently small in order that (68) is still valid for the large values of 
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x=a/A  appearing in (69) and (70). Within this restriction, the maximal 
reduction of the rate 

min~k(a)  k(xmi.(z) A) 
- -  =G(xmin(z) ,z) ,  Z>Zo (71) 

k(a = o) k(a = O) 

is independent of A. This amazing effect was observed for the first time 
using confined homogeneous noise (15) with ~= ~ by Franaszek ('m and 
was predicted analytically and confirmed numerically for Gaussian white 
and colored noise in I. For related phenomena occurring in the context of 
deterministic diffusion with noise and two-dimensional noisy maps see 
refs. 22 and 5, respectively. The present investigation shows that stabiliza- 
tion of transient chaos can be induced basically by any kind of uncorrelated 
weak noise. In particular, the distribution of the noise P(~, x) may be 
asymmetric about ~ = 0. 

By similar calculations, further qualitative features of G(x, z) can be 
determined. For convenience we restrict ourselves to the case that ho~(x) is 
bounded (e.g., 6-peaks are thus excluded) and we omit detailed proofs. For  
particular examples we refer to Fig. 4 in I. One finds that G(x, z) is strictly 
monotonically decreasing with increasing x in the region x < 0 and we thus 
concentrate on x~>0. For z>~Zo the absolute minimum (in the domain 
x~>0) of G(x,z) at X=Xmin(Z)>O turns out to increase monotonically 
with z, while G(xmin(Z), z) decreases monotonically with z. In particular, 
one can assume that z o is chosen such that the absolute minimum of 
G(x,z) as a function of x~>0 is at x = 0  for all Z<Zo and at 
0 < Xmin(Z)< OV for all z > z0. Further, one finds for asymptotically large z 
that 

zb~(O) 
Xmin(Z) = t'c~ . (72) 

]o ay ho~(y) yl/: 

G(xmi.(z), z) = dy hoo(y) (73) 

If ho~(x) is symmetric about x=O,  it follows from (71) and (73) that 

mink(cr)--,k(cr=O)/2 for large z (74) 
o" 

Recall that G(xmin(Z), z) is strictly decreasing with z and that symmetric 
noise distributions P ( - ~ ,  x ) = P ( ~ ,  x), for instance (11)-(15), lead to a 
symmetric h~(x). Therefore, for symmetric noise distributions P ( - ~ ,  x )=  
P(~, x) the stabilization of  transient chaos by noise (71) cannot exceed a 
factor of 1/2 and this limit is actually saturated when z ~ oo independently 
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of any further details of the map f(x) and the noise P(~, x). Finally, under 
the assumption that ( y ) : = I ~  yh~(y)dy is finite, one can show that 
Zo> 1 if ( y )  >0 ,  Zo= 1 if ( y )  =0 ,  and Zo< l if ( y )  <0.  In particular, for 
symmetric noise distributions, noise-induced stabilization of transient chaos 
occurs if  and only i f  z >  1. If ( y )  does not exist, things become more 
complicated. 

5.1. Heur is t i c  Exp lana t ion  

In order to explain noise-induced stabilization of transient chaos, we 
first consider the case of transient chaos ,4 > 0 without noise cr = 0. Then, 
a particle (1) escapes from the unit interval [0, 1] if and only if it passes 
through the small neighborhood of the maximum x* which is mapped out- 
side [0, 1] under f(x). According to (3), the size of this neighborhood is 
L=2(,4/b) '/:. As we have seen in Eq. (22), the quasi-invariant density is 
approximated very well by the constant value p(x*) within this entire 
neighborhood of x*. Consequently, the probability per time step to escape 
from the unit interval, i.e., the escape rate k, is given by k=p(x*)L ,  in 
agreement with (44). Next we disturb the map f (x)  by a small amount of 
additive dichotomous white noise (10), (14) with g(x)= 1. Thus, at any 
time step the dynamics is governed with probability 1/2 by either of 
the maps f ( x ) + a  or f ( x ) - a .  Therefore, the size of the respective 
neighborhoods of x* which must be visited by an escaping particle is 
L + = 2[ (,4 + a)/b] t/: or L_  = 2[ (,4 - a) 0(,4 - a)/b] l/: (we remember that 
only ,4 > 0  is considered). Again, within these neighborhoods of x*, the 
probability density is well approximated by p(x*) for small cr and ,4 and 
thus the escape rate is given by 

L+ + L _  [,4 + a ] ' / :  + [(A --a) 0('4 - -a ) ]  '/-" 
k(a) = p(x*) 2 p(x*) bl/~ (75) 

For a = 0 once recovers (44). When a increases, L+ grows and L_  shrinks, 
but since the cr dependence is nonlinear, the decrease of L_ exceeds the 
increase of L+ for z >  1 and sufficiently small a. This is the basic 
mechanism leading to a stabilization of transient chaos by noise. It is 
suggestive that qualitatively the same behavior will be observed for more 
general noise distributions P(~, x). 

However, it must be emphasized ~L ~2) that the arguments leading to 
the rate formula (75) are strictly valid only if either f ' (x)  diverges or f (x )  
is discontinuous at the interval boundaries x = 0 and x = 1. Otherwise, the 
dichotomous noise can drive particles out of the unit interval even if they 
never visited the appropriate neighborhoods L+ or L_  of x*. On the other 
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hand, particles which already left the unit interval can be pushed back into 
[0, 1] by the noise. A careful inspection of these two competing effects 
sooner or later leads back to the rather involved calculations of Section 3. 
It is not even possible to decide by simple arguments whether the two 
effects sum up to an effective enhancement or reduction of the naive 
result (75). 

The line of reasoning yielding (75) for dichotomous white noise can 
readily be generalized to arbitrary noise distributions P(~,x) with the 
result 

k(a)=p(x*) j ~ 2 O(A+a~)P(~,x*)d~ (76) 
- - z <  

[ Unlike in (75), negative A are now admitted. ] Similar rate formulas have 
been derived in refs. 3, 4, and 11. Approximations similar in spirit have also 
been used in refs. 9 and 21. Equation (76) can be recast into the form (39), 
(40), but with P(x, x*) in place of h~(x). According to (30), (31), the naive 
rate (76) is thus equivalent to approximating h~(x) by ho(x) and becomes 
exact only if P(~, x ) =  6(~) or f ' ( x ) - I  = 0 at the interval boundaries x = 0 
and x =  1. For special maps and noises, improved approximations, com- 
parable to approximating h~(x) by h~(x) in our notation have been 
obtained in refs. 3 and 11. One can easily find both examples for which 
these approximations of h~(x) by ho(x) or hi(x) agree very well or very 
badly with the exact expression (39). Several of the above-mentioned 
references are also concerned with problems other than the escape rate for 
a noisy one-dimensional map near a crisis. Their merits in this respect are 
of course untouched by our discussion. 
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